DISCOVERING STATISTICS USING R

The R environment

Self-test answers

Most of the self-test answers for this chapter are provided within the chapter of the book, so they
won’t be included here as that would be silly.

e C(Create an object that represents your favourite band (unless it’s
Metallica, in which case use your second favourite band) and that
contains the names of each band member. If you don’t have a favourite
band, then create an object called friends that contains the names of
your five best friends.

One of my all-time favorite bands is Iron Maiden. If we wanted to create the object ironMaiden
containing all the present band members’ names, we would execute the following command:

ironMaiden<-c("'Dave', "Adrian', "Nicko'", "Bruce", “Janick”, “Steve”)

Then, if we type the command:

ironMaiden

The contents of the object ironMaiden will be displayed in the console window:

[1] "Dave" "Adrian" "Nicko" "Bruce" "Janick" "Steve"

e Using what you have learnt about how to use the factor() function, see if
you can work out how to convert the job variable to a factor.

lecturerData$job<-factor(lecturerData$job, levels = c(1:2), labels = c(*Lecturer”,
"Student'))

e Using the lecturerData dataframe, create new dataframes containing (1)
the name, income and job of anyone earning 10,000 or more; (2) the
name, job, income and number of friends of anyone drinking 12 units per
week or less; and (3) all of the variables for those who drink 20 units or
more or have a neuroticism score greater than 14.

(1)

highEarners <- lecturerData[income>=10000, c(*‘name', "job", *"income™)]

Note | have used ‘>=’ to mean ‘greater than or equal to’; Alternatively, using the subset() function:

highEarners <- subset(lecturerData, income>=10000, select = c(“"name', "job",
"income™))

The dataframe will be:

name job income
Ben Lecturer 20000
Martin Lecturer 40000
Andy Lecturer 35000
Paul Lecturer 22000
Graham Lecturer 50000
Mark Student 10000

oulTk wN R

(2)

soberPeople <- lecturerData[alcohol<=12, c(''name', "job', "income', '"friends'")]

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

Note | have used ‘<=" to mean ‘less than or equal to’; Alternatively, using the subset() function:

soberPeople <- subset(lecturerData, alcohol<=12, select = c(name’, "job", "income",
"“friends™))]

The dataframe will be:

name job income friends
1 Ben Lecturer 20000 5
4 Paul Lecturer 22000 4

(3)
neuroticOrAlcoholic <- lecturerData[alcohol>=20]neurotic > 14,]

neuroticOrAlcoholic <- subset(lecturerData, alcohol>=20|neurotic > 14)

Note | have used ‘|’ to mean ‘OR’, and because we want all of the variables we haven’t specified any
columns. Alternatively, using the subset() function:

soberPeople <- subset(lecturerData, alcohol<=12, select = c('name', "job", '"income",
"friends™))]

The dataframe will be:

name birth date job friends alcohol income neurotic
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
5 Graham 1949-10-10 Lecturer 1 30 50000 21
6 Carina 1983-11-05 Student 10 25 5000 7
7 Karina 1987-10-08 Student 12 20 100 13

Oliver Twisted

Please Sir, can | have some more ... SPSS?

The following excerpt appears in:

. Field, A. P. (2009). Discovering statistics using SPSS: and sex and drugs and rock ’n’

W,F:T roll (3rd edition). London: Sage.

Entering Data into the Data Editor

When you first load SPSS it will provide a blank data editor with the title Untitled1 (this of course is
daft because once it has been given the title ‘untitled’ it ceases to be untitled!). When inputting a new
set of data, you must input your data in a logical way. The SPSS Data Editor is arranged such that each
row represents data from one entity while each column represents a variable. There is no
discrimination between independent and dependent variables: both types should be placed in a
separate column. The key point is that each row represents one entity’s data (be that entity a human,
mouse, tulip, business, or water sample). Therefore, any information about that case should be
entered across the data editor. For example, imagine you were interested in sex differences in
perceptions of pain created by hot and cold stimuli. You could place some people’s hands in a bucket
of very cold water for a minute and ask them to rate how painful they thought the experience was on
a scale of 1 to 10. You could then ask them to hold a hot potato and again measure their perception
of pain. Imagine | was a participant. You would have a single row representing my data, so there
would be a different column for my name, my gender, my pain perception for cold water and my pain
perception for a hot potato: Andy, male, 7, 10.

The column with the information about my gender is a grouping variable: | can belong to either the
group of males or the group of females, but not both. As such, this variable is a between-group

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

variable (different people belong to different groups). Rather than representing groups with words, in
SPSS we have to use numbers. This involves assigning each group a number, and then telling SPSS
which number represents which group. Therefore, between-group variables are represented by a
single column in which the group to which the person belonged is defined using a number. For
example, we might decide that if a person is male then we give them the number 0, and if they're
female we give them the number 1. We then have to tell SPSS that every time it sees a 1 in a
particular column the person is a female, and every time it sees a 0 the person is a male. Variables
that specify to which of several groups a person belongs can be used to split up data files (so in the
pain example you could run an analysis on the male and female participants separately).

Finally, the two measures of pain are a repeated measure (all participants were subjected to hot and
cold stimuli). Therefore, levels of this variable can be entered in separate columns (one for pain to a
hot stimulus and one for pain to a cold stimulus).

The data editor is made up of lots of cells, which are just boxes in which data values can be placed.
You can move around the data editor, from cell to cell, using the arrow keys «— ™o (found on the
right of the keyboard) or by clicking the mouse on the cell that you wish to activate. To enter a
number into the data editor simply move to the cell in which you want to place the data value, type
the value, then press the appropriate arrow button for the direction in which you wish to move. So, to
enter a row of data, move to the far left of the row, type the value and then press — (this process
inputs the value and then moves you into the next cell on the right).

The first step in entering your data is to create some variables using the ‘Variable View’ of the data
editor, and then to input your data using the ‘Data View’ of the data editor. We'll go through these
two steps by working through an example.

The “Variable View’

Before we input any data into the data editor, we need to create the variables. To create variables we
use the ‘Variable View’ of the data editor. To access this view click on the ‘Variable View’ tab at the
bottom of the data editor (| Deta \iew | Variable View |). the contents of the window will change (see Figure
1).

Fle Edl View Dala Transfom Analyze Grephs Wilies Addons Window Help

cHA @ 00 Bk A Ah B6E HOS

| Name Type Wiith Dec\mals‘ Lakel Walues Missing Columng: Align Measure

1 -

G

4/ »
Data View | Variable View

SPSS Processor ks ready

Figure 1: The ‘Variable View’ of the SPSS Data Editor

Every row of the variable view represents a variable, and you set characteristics of a particular
variable by entering information into the labelled columns. You can change various characteristics of
the variable by entering information into the following columns (play around and you’ll get the hang
of it):

Let’s use the variable view to enter the data from the book chapter (Table 3.1).

Creating a string variable

The first variable in our data set is the name of the lecturer/student. This variable consists of names;
therefore, it is a string variable. To create this variable follow these steps:
1 Move the on-screen arrow (using the mouse) to the first white cell in the column labelled
Name.
2 Type the word Name.
3 Move off this cell using the arrow keys on the keyboard (you can also just click on a different
cell, but this is a very slow way of doing it).
You’ve just created your first variable! Notice that once you’ve typed a name, SPSS creates default
settings for the variable (such as assuming it’s numeric and assighing 2 decimal places). The problem

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

is that although SPSS has assumed that we want a numeric variable (i.e. numbers), we don’t; we want
to enter people’s names, namely a string variable. Therefore, we have to change the variable type.
Move into the column labelled ___Tiee | using the arrow keys on the keyboard. The cell will now
look like this [humeic [-]. Click on [-]to activate the dialog box in Figure 2. By default, SPSS selects the
ype () — see the left panel of Figure 2. To change the variable to a string
variable, click on ©bl and the dialog box will change to look like the right panel of Figure 2. You can
choose how many characters you want in your string variable (i.e. the maximum number of
characters you will type for a given case of data). The default is 8, which is fine for us because our
longest name is only six letters; however, if we were entering surnames as well, we would need to
increase this value. When you have finished, click on to return to the variable view.

numeric variable t

r .| r
E Variable Type LéJ E Wariable Type [ihj
® () Humeric
@ CEnmE Wleith) Comma b2
Opot DecimalPlaces: [p | Dot
~) Seientific notation () Soientific notation

() Date Date

Dollar

) Dallar

() Custom currency (_) Custom currency

| ok || cancel || rew | | ox || cancel || Hep

() String

e e

Figure 2: Defining a string variable in SPSS

Now because | want you to get into good habits, move to the cell in the [[[<
column and type a description of the variable, such as ‘Participant’s First Name’. |¢ Scale
Finally, we can specify the level at which a variable was measured by going to the |l Ordinal
column labelled Measure and selecting either Nominal, Ordinal or Scale from the @ Nominal
drop-down list. In this case, we have a string variable, so they represent only names of cases and
provide no information about the order of cases, or the magnitude of one case compared to another.
Therefore, we need to select ¢ tominal

Once the variable has been created, you can return to the data view by clicking on the ‘Data View’
tab at the bottom of the data editor (| Data View | varishleView |) The contents of the window will change,
and you’ll notice that the first column now has the label Name. To enter the data, click on the white
cell at the top of the column labelled Name and type the first name, ‘Leo’. To register this value in this
cell, we have to move to a different cell and because we are entering data down a column, the most
sensible way to do this is to press the J key on the keyboard. This action moves you down to the next
cell, and the word ‘Leo’ should appear in the cell above. Enter the next name, ‘Martin’, and then press
d to move down to the next cell, and so on.

Creating a date variable

Notice that the second column in our table contains dates (birth dates to be exact). To enter date
variables into SPSS we use the same procedure as with the previous variable, except that we need to
change the variable type. First, move back to the ‘Variable View’ using the tab at the bottom of the
data editor (| Data view | Variable View |) Ag with the previous variable, move to the cell in row 2 of the
column labelled Name (under the previous variable you created). Type the word ‘Birth_Date’ (note
that we have used a hard space to separate the words). Move into the column labelled _ Ty |
using the — key on the keyboard (SPSS will create default settings in the other columns). The cell will
now look like this [meic |-<]. Click on [-] to activate the dialog box in Figure 3. By default, SPSS selects
the numeric variable type () — see the left panel of Figure 3. To change the variable to a date,

click on (2222 3nd the dialog box will change to look like the right panel of Figure 3. You can then
choose your preferred date format; being British, | am used to the days coming before the month and
I have stuck with the default option of dd-mmme-yyyy (i.e. 21-Jun-1973), but Americans, for example,
will be used to the month and date being the other way around and could select mm/dd/yyyy

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

(06/21/1973). When you have selected a format for your dates, click on (oK Jto return to the
variable view. Finally, move to the cell in the column labelled Label and type ‘Date of Birth’.

3 3
B variable Type L'&'J R variable Type ['&'J
® O humeric dck-mmm-yyyy !

(@) = LG
_ Comima . _ Comima .
() Dot Decital Places: Cl Dat iy
~) Scientific notation Scientific notation |[SCMM-YYY |
cict.mim.yy
| Date e immiclcl
() Dollar () Dolksr i el
T oo yycloldd
() Custom currenc () Custom currenc
- t - tf o
() String () String 9 @y [+
| Ok J| Cancel H Help ‘ (o8 J| Cancel || Help
. L

Figure 3: Defining variable types in SPSS

Now that the variable has been created, you can return to the data view by clicking on the ‘Data
View’ tab (| DataWiew | varisble View |) gnd input the dates of birth. The second column now has the label
Birth_Date; click on the white cell at the top of this column and type the first value, 03-Jul-1977. To
register this value in this cell, move down to the next cell by pressing the 4 key on the keyboard. Now
enter the next date, and so on.

Creating coding variables®

A coding variable (also known as a grouping variable) is a variable that uses numbers to represent
different groups of data. As such, it is a numeric variable, but these numbers represent names (i.e. it
is a nominal variable). These groups of data could be levels of a treatment variable in an experiment,
different groups of people (men or women, an experimental group or a control group, ethnic groups,
etc.), different geographic locations, different organizations, etc.

In experiments, coding variables represent independent variables that have been measured
between groups (i.e. different participants were assigned to different groups). If you were to run an
experiment with one group of participants in an experimental condition and a different group of
participants in a control group, you might assign the experimental group a code of 1 and the control
group a code of 0. When you come to put the data into the data editor you would create a variable
(which you might call group) and type in the value 1 for any participants in the experimental group,
and 0 for any participant in the control group. These codes tell SPSS that all of the cases that have
been assigned the value 1 should be treated as belonging to the same group, and likewise for the
cases assigned the value 0. In situations other than experiments, you might simply use codes to
distinguish naturally occurring groups of people (e.g. you might give students a code of 1 and
lecturers a code of 0).

We have a coding variable in our data: the one describing whether a person was a lecturer or
student. To create this coding variable, we follow the steps for creating a normal variable, but we also
have to tell SPSS which numeric codes have been assigned to which groups. So, first of all, return to
the variable view (| Data visw | Variable View |) if you're not already in it and then move to the cell in the
third row of the data editor and in the column labelled Name type a name (let’s call it Group). I'm still
trying to instill good habits, so move along the third row to the column called Label and give the
variable a full description such as ‘Is the person a lecturer or a student?’ Then to define the group

codes, move along the row to the column labelled and into this cell: [Moe -] Click on [to
access the Value Labels dialog box (see Figure 4).

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

Click on the appropriate cell in
the column labelled Values

[“Data vith which to playsav [Dataset

Fle Edt View Deta Transform Analyze Graphs)
lcHa § 00 »BR & A8 EYX
[mame | 7ype | width [DecimaW Label | Values Missing | Columns Algn | Measure

1 Name Sring 8 0 icipant’s Fi_ Nane None & = & Nominal

2 Birth_Date Date " 0 Birth\Wate Nane Nane 8 & Scale

3 Group Murneric 8 1} Iz the PENGN & :| Mone [E} = Center & Mominal

¢ g [T
Data View | Variable View N\

\ SPSS Processor is ready

HH Value Labels Then, click
Walue Labels on |_|

Label: [student

1.00 = "Lecturer"))
This activates

the Value
Labels dialog
box

‘ Ok _” Cancel || Help |

Figure 4: Defining coding variables and their values in SPSS

The Value Labels dialog box is used to specify group codes. This can be done in three easy steps.
First, click with the mouse in the white space next to where it says Value (or press Alt and u at the
same time) and type in a code (e.g. 1). These codes are completely arbitrary; for the sake of
convention people typically use 0, 1, 2, 3, etc., but in practice you could have a code of 495 if you
were feeling particularly arbitrary. The second step is to click the mouse in the white space below,
next to where it says Value Label (or press Tab, or Alt and e at the same time) and type in an
appropriate label for that group. In Figure 4 | have already defined a code of 1 for the lecturer group,
and then | have typed in 2 as my code and given this a label of Student. The third step is to add this
coding to the list by clicking on 2% | When you have defined all of your coding values you can click
on | s=me. | and SPSS will check your variable labels for spelling errors (which can be very handy if you
are as bad at spelling as | am). To finish, click on ; if you click on and have forgotten to
add your final coding to the list, SPSS will display a message warning you that any pending changes
will be lost. In plain English this simply tells you to go back and click on |__&# | before continuing.
Finally, coding variables always represent categories and so the level at which they are measured is
nominal (or ordinal if the categories have a meaningful order). Therefore, you should specify the level
at which the variable was measured by going to the column labelled Measure and selecting
g Nominal (gp all Ordinal if the groups have a meaningful order) from the drop-down list (see
earlier).

Having defined your codes, switch to the data view and type these numerical values into the appropriate
column (so if a person was a lecturer, type 1, but if they were a student then type 2). You can get SPSS to

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

display the numeric codes, or the value labels that you assigned to them by clicking on % (see

A7) Lecturer Data.sav [DataSetd] - PASW Statistics Data A D M) Lecturer Data.sav [DataSet1] - PASW Statistics Data Editor
: = pre=—yr
?ﬁn—er‘ﬂﬂﬁﬂﬂﬂﬁ SHE M -~ Bl 8 §E
Visible: 7 of 7 Variables Visible: 7 of 7 Varlilﬂﬂ
Mame Bt Dute Croup | friends | Asbal i T ame | Emnee | Goup | Penar | Alskel |
1 Ben D3-ul-1977 Lectures 5 10 1 Ben B3 1977 T | 5 | m 1
2 Manin 24-ay- 1965 Lectures F 15 I 2 Martin T4-May- 1965 1 F] 15 :
3 Andy 2l-jen-1971 Lecturer [n | andy Ti-jun-1571 1 o 0 |
" Faul 16-Jul-1570 Lecturer ’ 5 | Paul 16-h-1970 1 4 5 |
5 Graham 15-Oct-1848 Lectures i 30 Graham 10-001- 1345 1 1 0
& Caing 05-Neow- 1983 Student " 3 Carina - Hov- 1983 : in F
i Karina 08-Oct- 1587 Stugent (7] 0 Karina 08-Oct- 1987 F] 1 0
' Doy 23-pn- 1580 Stussent i1 16 Doy T-Jan- 138 2 5 18
L] Mark 20-May- 1973 Student 2 i Mark 20-May-1973 2 1z 17
it Zoe 12+ 1984 Stuent iH 18 0 Zoe 12-New- 1984 r 17 s
I s
===] = el
| Data View . Variable View | Data View - Variable View |
PASW Statistics Processor s ready [PASW Statistics Processor is ready!
Figure 5), which is pretty groovy.
A M) Lecturer Data.sav [DataSet1] - PASW Statistics Data B M) Lecturer Data.sav [DataSet1] - PASW Statistics Data Editor
£ f=
?EL-JﬁErw.ﬂf?ﬁﬂaﬂﬁ SHE M «~ Bl 11 H &
Visible: 7 of 7 Variables Visible: 7 of 7 Varlilﬂﬂ
Mame Bt Dute Croup | friends | Asbal i T ame | Emnene | G | Pends | Aksbal
1 Nen 03-Jul- 1577 Lecturer 5] 1 Ben [ETET i | 3 |
2 Manin 24-ay- 1965 Lectures F 15 I 2 Martin T4-May- 1965 1 F] 15 :
3 Andy 2l-jen-1971 Lecturer [n | andy Ti-jun-1571 1 o 0 |
i Faul 16-Jul-1570 Lecturer [5 Paul 16-hd-1970 1 4 5 |
5 Graham 15-Oct-1848 Lectures i 30 Graham 10-001- 1345 1 1 0
& Caing 05-Neow- 1983 Student " 3 Carina - Hov- 1983 : in F
i Karina 08-Oct- 1587 Stugent (7] 0 Karina 08-Oct- 1987 F] 1 0
(] fleas 3-Jan- 1589 Student {11 16 Doy - 1945 15 16
L] Mark 20-May- 1973 Student 2 i Mark 20-May-1973 2 1z 17
it Zoe 12+ 1984 Stuent iH 18 0 Zoe 12-New- 1984 r 17 s
I s
=== el = 2wl
| Data View . Variable View | Data View - Variable View |
PASW Statistics Processor s ready [PASW Statistics Processor is ready.

Figure 5 shows how the data should be arranged for a coding variable. Now remember that each
row of the data editor represents data from one entity and in this example our entities were people
(well, arguably in the case of the lecturers). The first five participants were lecturers whereas
participants 6—10 were students.

This example should clarify why in experimental research grouping variables are used for variables
that have been measured between participants: because by using a coding variable it is impossible for
a participant to belong to more than one group. This situation should occur in a between-group
design (i.e. a participant should not be tested in both the experimental and the control group).
However, in repeated-measures designs (within subjects) each participant is tested in every condition
and so we would not use this sort of coding variable (because each participant does take part in every
experimental condition).

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

M) Lecturer Data.sav [DataSet1] - PASW Statistics Data Editor A O M) becturer Data.sav [DataSet1] - PASW Statistics Data Editor
FEHE M~ BLf N SHE M «~ Bkl B HE
Visible: 7 of 7 Variables Visible: 7 of 7 Variables

Croup friends | Adoobal Name Croup Friends | Ascobal

Martin 24-May- 1963 Lecturer 2 5| 2 Martin Ta-May- 1965 1
Andy Il-kn-1873 Lecturer o u |f 1 Andy H-jun-1571 1 |
] Faul 16-Rul-1570 Lecturer 4 s 1 Faul 16-jud- 1970 1] 5
1

5 Graham 10-Oct- 1848 Lectures] 50 Craham 10-0ct- 1945

6 [05-Now-1983 Studen 0 P13 ‘_ _k S Carina
7 Karina 08-Oct- 1587 Student [F] 0 7 Kafina
' Dowsp T-ln- 156 Studant B 16 T Do

3 Mark 20-May-1973 Student [17 Mark

i) Toe 12-Merv- 1984 Student [s 1 Toe

—
r:. '==_‘::.
(‘Dataview | variable View [Data View Variable View
PASW Statistics Processor Is ready PASW Statistics Processor is ready
Value Labels On Value Labels Off

Figure 5: Coding values in the data editor with the value labels switched off and on

Creating a numeric variable

Numeric variables are the easiest ones to create because SPSS assumes this format for data. Our next
variable is No. of friends; to create this variable we move back to the variable view using the tab at
the bottom of the data editor (| Data View | Variable View |) As with the previous variables, move to the cell
in row 4 of the column labelled Name (under the previous variable you created). Type the word
‘Friends’. Move into the column labelled __ Tse | using the — key on the keyboard. As with the
previous variables we have created, SPSS has assumed that this is a numeric variable, so the cell will
look like this Mumeric [0 \We can leave this as it is, because we do have a numeric variable.

Notice that our data for the number of friends has no decimal places (unless you are a very strange
person indeed, you can’t have 0.23 of a friend). Move to the [Pesimaiz| column and type ‘0’ (or decrease
the value from 2 to 0 using) to tell SPSS that you don’t want any decimal places.

Next, let’s continue our good habit of naming variables and move to the cell in the column labelled
Label and type ‘Number of Friends’. Finally, we can specify the level at which a variable was measured
by going to the column labelled Measure and selecting ¢ e from the drop-down list (this will
have been done automatically actually, but it’s worth checking).

Once the variable has been created, you can return to the data view by clicking on the ‘Data View’
tab at the bottom of the data editor (| Data View | varisble view |) The contents of the window will change,
and you’ll notice that the first column now has the label Friends. To enter the data, click on the white
cell at the top of the column labelled Friends and type the first value, 5. To register this value in this
cell, we have to move to a different cell and because we are entering data down a column, the most
sensible way to do this is to press the J key on the keyboard. This action moves you down to the next
cell, and the number 5 should appear in the cell above. Enter the next number, 2, and then press dto
move down to the next cell, and so on.

Please Sir, can | have some more ... data restructuring?

To restructure the satisfactionData dataframe we create a new dataframe (which |
have unimaginatively called restructuredData). This dataframe is based on the
existing data (satisfactionData), but we use reshape() to, as the name suggests,
reshape it. This function takes the general form:

newDataFrame<-reshape(oldDataFrame, idvar = c(constant variables),

varying = c(variables that change across columns), v.names = "Name of
Variable to contain Scores', timevar = "Name of Index Variable', times =
c(numbers representing levels of the index variable), direction = "long™)

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

As you can see, the reshape() command has a lot of options contained within it and we will have a
look at these in turn:

idvar: This option specifies any variables in the dataframe that do not vary over time. For
these data we have two variables that don’t vary over time, the first is the person’s
identifier (Person), and the second is their gender (Gender). We can specify these variables
as idvar = c("Person", "Gender").

varying: This option specifies the variables that do vary over time. In other words, it
specifies the names of variables currently in different columns that you would like to be
restructured so that they are in different rows. We have four columns that we want to
restructure (Satisfaction_Base, Satisfaction_6_Months, Satisfaction_12_Months,
Satisfaction_18_Months). These can be specified as varying = c("Satisfaction_Base",
"Satisfaction_6_Months", "Satisfaction_12_Months", "Satisfaction_18_ Months").

v.names: This option allows you to specify a name for the outcome variable. Our scores
represent life satisfaction so we could set the variable name accordingly using v.names =
"Life_Satisfaction" (note that because the variable name is text it needs to be enclosed in
quotation marks).

timevar: This option allows you to specify a name for the index variable (described above).
By default, it is assumed that your columns represent different points in time and the new
variable is, therefore, called ‘time’. However, your columns might have represented
different conditions in a repeated measures experiment, in which case you will want to call
this variable something else. Although for these data the default name of ‘time’ is fine, |
have set the variable name using timevar = "Time" to give you an idea of how you’d change
the name, and also because I'm a pedant and wanted a capital ‘T’ at the start of ‘time’. |
need to get a life.

times: This option enables you to specify the values used by the index variable to denote
different levels. For example, we had four columns that we have restructured, so we have
four levels of our index variable. By default, R will simply code these as 1, 2, 3, 4. Seems
logical enough, but you might want to change this default. For this example, it’s useful to
centre this variable at 0 because our initial life satisfaction was measured before the new
relationship. Therefore, a baseline of 0 is meaningful for these data because it is the value
of life satisfaction when not in a relationship. Therefore, we want to use index values of O,
1, 2, 3 rather than 1, 2, 3, 4. This can be achieved by using times = ¢(0:3). This command just
tells R to use the values 0 to 3 inclusive as the index values. If you don’t want a sequence of
numbers then specify the values individually (e.g. times = ¢(-1, 2, 5, 10)).

direction: This option can be set to either “wide” or “long” and determines the direction in
which you want to reshape the data. In this case we want to create a long format data file
so we would specify direction = “long”.

If we piece all of these options together, we get the following command:

restructuredData<-reshape(satisfactionData, idvar = c(*'Person', *"Gender'), varying =
c("'Satisfaction_Base', "Satisfaction_6_ Months', "Satisfaction_12 Months",
"Satisfaction_18 Months'), v.names = "Life_Satisfaction', timevar = "Time", times =

c(0:3), direction = "long™)

If you execute this command, you should find that your data has been restructured to look like this:

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

0

ann R Data Editor

1 T
GlrE s =

row.nzmes Person Gender Time Life_Satisfacticn

1.0.0 o 0 [

1.0.1 O
1.0.2
1.0.3
2.1.0
2.1.1
2.1.2
2.1.3
3.1.0
311
3.1.2
3.1.3
4.0.0
4.0.1
4.0.2
4.0.3
5.0.0
5.0.1
5.0.2
5.0.3
6.1.0
6.1.1
6.1.2
6.1.3
7.0.0

N VYL R R AR W W W WNRN YRR R e
o

ochrH-rHrOoOCOCDOCOO KR HHEHELH 00O
o MR = N RO NNOYE RN NN O

Smart Alex’s solutions

Task 1

e Smart Alex’s first task for this chapter is to save the data that you’ve entered in this chapter.
Save it somewhere on the hard drive of your computer (or a USB stick if you’re not working
on your own computer). Give it a sensible title and save it somewhere easy to find (perhaps
create a folder called ‘My Data Files” where you can save all of your files when working
through this book).

The data that we need to save are the Lecturer Data that you should have entered in this chapter.
First of all, let’s create a folder on the hard drive of your computer called ‘My Data Files’. To do this
you could go to your ‘Documents’ folder and then create a new folder by using the File=New Folder
menu, and then type in a name for your new folder such as ‘My Data Files’. So, assuming your user
name is Andy F, the new folder would have the following file path:

C:/Users/Andy F/Documents/My Data Files/

Before we can save the Lecturer Data in this folder, we first need to set this folder as our working
directory so that R knows this is the location that we want to save the data. To set the working
directory to be this folder, we use the setwd() command to specify the newly created folder as the
working directory:

setwd("'C:/Users/Andy F/Documents/My Data Files'™)

By executing this command, we can now save and access files in that folder directly.
Earlier on we created a dataframe called lecturerData. To export (save) this dataframe to a tab-
delimited text file called Lecturer Data.txt, we could execute this command:

write.table(lecturerData, "Lecturer Data.txt", sep="\t", row.names = FALSE)

Or we could save the dataframe as a comma-separated values file by executing the following
command:

write.csv(lecturerData, "Lecturer Data.csv')

PROFESSOR ANDY P FIELD

10

DISCOVERING STATISTICS USING R

Task 2

e Your second task is to enter the data that | used to create Figure 3.8. These data show the
score (out of 20) for 20 different students, some of whom are male and some female, and
some of whom were taught using positive reinforcement (being nice) and others who were
taught using punishment (electric shock). Just to make it hard, the data should not be
entered in the same way that they are laid out below:

Male Female
Electric Shock Being Nice Electric Shock Being Nice
15 10 6 12
14 9 7 10
20 8 5 7
13 6 4 8
13 7 8 13

The first thing to note is that we have a coding variable in our data: the one describing whether a
student was taught using punishment (electric shock) or reinforcement (being nice). To create this
coding variable, we follow the steps for creating a normal variable, but we also have to tell R that the
variable is a coding variable/factor and which numeric codes have been assigned to which groups.

First off, we can enter the data and then worry about turning these data into a coding variable. In
our data we have 10 students who were taught using the electric shock method (whom we will code
with 1) and 10 students who were taught using the method of being nice (whom we will code with 2).
As such, we need to enter a series of 1s and 2s into our new variable, which we’ll call Method, we
could do this using the rep() function.

Method<-c(rep(1, 10), rep(2, 10))

To turn this variable into a factor, we use the factor() function:

Method<-factor(Method, levels = c(1:2), labels = c("Electric Shock'™, "Being Nice'))
Gender is also a coding variable. There are 10 males (whom we will code with 0) and 10 females

(whom we will code with 1). As such, we need to enter a series of Os and 1s into our new variable,
which we’ll call Gender, we could do this using the rep() function:

Gender<-c(rep(0, 5),rep(1, 5), rep(0, 5),rep(l, 5))

As you will see, | have put rep(0, 5),rep(1, 5) in twice, rather than rep(0, 10),rep(1, 10). This is because
5 males and 5 females were taught using punishment and 5 males and 5 females were taught using
reinforcement, and so we need to tell R to list the first 5 males and the first 5 females, followed by
the second 5 males and the second 5 females (not all 10 males followed by all 10 females) so that
each gender correctly matches up with the corresponding teaching method. To turn this variable into
a factor, we use the factor() function:

Gender<-factor(Gender, levels = c(0:1), labels = c("Male™, "Female™))

Our next variable, which | have called Mark, is a numeric variable. We need to enter the data into
the command in the correct order so that R will know which mark belongs to whom. They need to be
in the order: Male ‘Electric Shock’, Female ‘Electric Shock’, Male ‘Being Nice’ and Female ‘Being Nice’
as in the following command:

Mark<-c(15,14,20,13,13,6,7,5,4,8,10,9,8,6,7,12,10,7,8,13)

Having created the individual variables we can bind these together in a dataframe. We do this by
executing the following command:

teachingMethodData<-data.frame(TeachingMethod, Gender, Mark)

You can then view the data by typing the command:

teachingMethodData

The data can be found in the file teachingMethodData.txt and should look like this:

Method Gender Mark

PROFESSOR ANDY P FIELD

DISCOVERING STATISTICS USING R

VWoOoJoO U wWwNRE

Electric Shock Male 15
Electric Shock Male 14
Electric Shock Male 20
Electric Shock Male 13
Electric Shock Male 13
Electric Shock Female
Electric Shock Female
Electric Shock Female
Electric Shock Female
10 Electric Shock Female

=
WOJONJ0WWWO WU Jo

Being Nice Male
Being Nice Male
Being Nice Male
Being Nice Male
Being Nice Male
Being Nice Female
Being Nice Female
Being Nice Female
Being Nice Female
Being Nice Female

B

=
w

To save the data as a tab-delimited file (or you could save it as a CSV file if you prefer), we use the
write.table() command:

write.table(teachingMethodData, "teachingMethodData.txt"”, sep="\t", row.names=FALSE)

Remember:

1)

2)

The data will be saved in the file that you previously set as your working directory (assuming
you have set one, otherwise who knows where it will save it!).

The above command will save the data only, not the commands you used to enter the data.
If you want to save the commands for future use, the best method it is to type the
commands into the editor window rather than the R console (you can copy and paste
commands from the R console to the editor window if you have used the R console), and
then save the editor window in a sensible place on your hard drive, ideally in the folder that
you use as your working directory.

Task 3

Research has looked at emotional reactions to infidelity and found that men get homicidal
and suicidal and women feel undesirable and insecure (Shackelford, LeBlanc, & Drass, 2000).
Let’s imagine we did some similar research: we took some men and women and got their
partners to tell them they had slept with someone else. We then took each person to two
shooting galleries and each time gave them a gun and 100 bullets. In one gallery was a
human-shaped target with a picture of their own face on it, and in the other was a target
with their partner’s face on it. They were left alone with each target for 5 minutes and the
number of bullets used was measured. The data are below; enter them into R and save them
as Infidelity.csv (clue: they are not entered in the format in the table!).

Male Female
Partner’s Face Own Face Partner’s Face Own Face
69 33 70 97
76 26 74 80
70 10 64 88
76 51 43 100
72 34 51 100
65 28 93 58
82 27 48 95
71 9 51 83
71 33 74 97
75 11 73 89
52 14 41 69
34 46 84 82

This experiment is a within-subjects design, all participants (male and female) participated in both
experimental conditions (bullets shot at own face and bullets shot at partner’s face). However, there
is one coding variable, which is whether the person aiming the bullets was male or female. There are

PROFESSOR ANDY P FIELD

12

DISCOVERING STATISTICS USING R

12 males (whom we will code with 0) and 12 females (whom we will code with 1). As in Task 2, we
need to enter a series of Os and 1s into our new Gender variable and we can do this using the rep()
function:

Gender<-c(rep(0, 12), rep(1, 12))
We then use the factor() function to turn this variable into a factor:

Gender<-factor(Gender, levels = c(0:1), labels = c("Male", "Female™))

The next variable, which we will call Partner, refers to the number of bullets each person shot at
their partner’s face. This is a numeric variable and can be entered using the following command:

Partner<-c(69,76,70,76,72,65,82,71,71,75,52,34,70,74,64,43,51,93,48,51,74,73,41,84)
The final variable is also a numeric variable and refers to the number of bullets each person shot at
their own face. We could call this variable Self and create it by executing the following command:
Self<-c(33,26,10,51,34,28,27,9,33,11,14,46,97,80,88,100,100,58,95,83,97,89,69,82)
Having created the individual variables we can bind these together in a dataframe. We do this by
executing the following command:

infidelityData<-data.frame(Gender, Partner, Self)

We can then view the data by executing:

infidelityData

The data can be found in the file Infidelity.csv and should look like this:

Gender Partner Self

1 Male 69 33
2 Male 76 26
3 Male 70 10
4 Male 76 51
5 Male 72 34
6 Male 65 28
7 Male 82 27
8 Male 71 9
9 Male 71 33
10 Male 75 11
11 Male 52 14
12 Male 34 46
13 Female 70 97
14 Female 74 80
15 Female 64 88
16 Female 43 100
17 Female 51 100
18 Female 93 58
19 Female 48 95
20 Female 51 83
21 Female 74 97
22 Female 73 89
23 Female 41 69
24 Female 84 82

To save these data as a CSV file we can use the write.csv() command:

write.csv(infidelityData, "Infidelity Data.csv')

PROFESSOR ANDY P FIELD

13

